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What were the inner workings of the Enigma machine that Germany used to encrypt its 
communications during World War Two, and what were the inner workings of the machine that 
Alan Turing designed to crack the Enigma cipher? 
 
The Enigma machine 
 
During World War Two the German forces used an electromechanical device to encode and 
decode their secret communications. The device, called the Enigma, had a keyboard with 26 
keys, and 26 light bulbs above it (Figure 1). Each of the keys had a different letter of the 
alphabet printed on it, as did each of the bulbs. When you pressed one of the keys, one of the 
lights would come on, but the letter that lit up was not the same as the letter you pressed. 
Typing the message 'HELLO', for instance, might result in a sequence of lights that spelled 
'PCUTM'. In other words, the machine could encode a typed message ('HELLO') into a ciphertext 
('PCUTM'). One useful feature of the Enigma machine was that it could also apply the inverse 
operation: it could decode ciphertext back into the original message. This was important for 
German communication: one operator could encrypt a message using their Enigma machine 
and send the resulting ciphertext (e.g., 'PCUTM') safely over the airwaves, after which a second 
operator receiving that secret message could simply type it into their Enigma machine to have 
the original letters light up again (e.g., 'HELLO'). 
 

This procedure clearly had the benefit of efficiency, 
but just how safe it was for the Germans, depends on 
how hard it was for their enemies to crack an 
intercepted piece of ciphertext. In this context it is 
initially surprising that the coded text that Enigma 
machines produced, is basically what is called a 
substitution cipher. In substitution ciphers each letter 
in the original message is transposed to some other 
letter to produce the ciphertext. Substitution ciphers 
have been in use for many centuries, and in most 
cases it doesn't take much to crack them. One good 
starting point, when you get your hands on a long 
enough fragment of ciphertext, is to count how many 
distinct symbols are used in the fragment. If it turns 
out that this number is about 26, then each symbol in 
the ciphertext probably corresponds to a letter in the 
alphabet (plus perhaps some punctuation marks), and 
all you need to do is identify the correspondence. 

There are several ways you could go about this, and none of them are particularly complicated. 
For instance, you could tally up how often each possible symbol occurs in your sample of 

 
Figure 1. An Enigma Machine. Source: 
museo della Scienza e della Tecnologia 
"Leonardo da Vinci", CC BY-SA 4.0 
<https://creativecommons.org/licenses/by-
sa/4.0>, via Wikimedia Commons. 



ciphertext. If the original text is in English, then the ciphertext symbol that occurs most often 
probably stands for the letter 'E'; the most common letter in English. From there you could 
move on to less common letters, and pretty soon you would be able to guess entire words like 
in a game of hangman, until you had identified the full correspondence between alphabet 
letters and ciphertext letters, and could reconstruct the original message. 
 
Clearly, an ordinary substitution cipher is not sufficiently secure to be relied on for top-secret 
wartime communications. But Enigma's substitution cipher was not ordinary. For one thing, 
tallying up ciphertext symbols would get you nowhere in the case of Enigma. A closer look at 
the Enigma-encoded version of 'HELLO' in our first paragraph makes this instantly clear. The 
ciphertext in that example read 'PCUTM'. In an ordinary substitution cipher each alphabet letter 
corresponds to a specific ciphertext letter, yet in 'PCUTM' the two consecutive L's of 'HELLO' 
correspond to a sequence of two different symbols, U and T. How can this be? 
 
To answer this question we need to look inside 
the Enigma machine, and follow the signal 
generated by a key press as it moves into the 
system (Figure 2). When one entered some letter 
by pressing its key on an Enigma machine, the 
first thing the letter's signal encountered on its 
way into the machine is the plugboard. This was 
an electrical circuit with on its outer side (the 
side connected to the machine's user interface) 
26 contacts that we may label A through Z, and 
on its inner side another 26 contacts that we may 
label the same. In many cases a letter's signal 
simply passed through the plugboard unaltered, 
so that a signal entering at position L resulted in 
a signal coming out at position L. In other cases, however, the signal got rerouted so that an L 
routed to, say, a Q. In other words, the plugboard on its own implemented a basic substitution 
cipher. But in the Enigma machine this was just the beginning. After the plugboard, the signal 
(either rerouted or not) went into the first of three so-called wheels1. Like the plugboard, a 
wheel was also a circuit that mapped 26 possible inputs onto 26 possible outputs, and the first 
wheel's job was to route any letter that entered its circuit from the plugboard to some letter 
coming out. Moreover, the three wheels were mounted right next to each other, so that the 
letter that came out of one wheel formed the input to the next. All three wheels were basically 
the same, but each had a different wiring, so the wheels differed in terms of which input letters 
got rerouted to which output letters. Clearly, by the time a letter came out of the third wheel, it 
bore a convoluted relationship to the letter that was originally pressed on the keyboard: the 
original letter may have been converted to a different letter in the plugboard, and then got 
converted three more times as the signal passed through the wheels. But this does not 
conclude the scrambling process inside an Enigma machine, and when one pressed a key the 
letter that came out of the third wheel was usually not the letter that lit up on the outside of 
the machine. Instead, after the third wheel an Enigma machine contained a reflector circuit. 

 
Figure 2. Basic organization of an Enigma 
machine. 
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This circuit took the letter that emerged from the third wheel and routed it straight back into 
that same wheel, but at a different spot. There the letter started its journey back through the 
third wheel, through the second and through the first, with each passage meaning another 
rerouting. Then, after one final passage back through the plugboard, the signal finally reached 
the end of its circuitous journey through the machine, at a bulb on the outside that lit up to 
reveal the ciphertext letter that corresponded to the alphabet key that had been pressed. 
 
But wait. Although the above description explains some of the Enigma's inner wiring, it does 
not explain how two L’s in ‘HELLO’ could translate to two distinct symbols in Enigma ciphertext. 
If anything, the description suggests that Enigma code was simply a substitution cipher: that 
any L pressed on the keyboard should have made the same journey through the machine, no 
matter how circuitous, and ignite the same bulb. But this was not the case, and this is where 
the real ingenuity of the Enigma machine lies, and what made Enigma code so much harder to 
crack than many other substitution ciphers. The crux is this: each time the input generated by a 
key press had passed through the machine to light up a letter, the first of the three wheels 
rotated by 1/26th of a full cycle, so by one letter. This means that, the next time that same key 
was pressed, the resulting signal took a different route than it did the first time and – in all 
likelihood – ended up lighting up a different letter. When typing 'HELLO', in other words, the 
first and second L would pass through the plugboard in the same fashion but then their paths 
would diverge: the two would enter the first wheel at different spots that were one step 
removed from each other, and then come out of that wheel at spots that could be any number 
of steps from each other, depending on the wheel's wiring. From there on the routes taken by 
the two signals would remain separated, with the result that one press of the L key could make 
the U bulb light up, while the other could ignite the T. 
 
The other two wheels were engaged in a stepwise rotation just like the first one, but they 
moved more slowly. Namely, each time the first wheel had taken 26 steps, thereby completing 
one full revolution, it pushed the second wheel up by 1/26th of its cycle. The third wheel moved 
26 times slower again, taking one step for every revolution of the second wheel. This means 
that one had to press a key 26x26x26 times, or about eighteen thousand times, before the 
machine returned to a setting it had visited before. Put another way, if someone took a novel 
and typed it into an Enigma machine, they would be about 40 pages in before typing a letter 
that was encrypted using the same settings and, therefore, the same substitution alphabet, as 
the letter they began with. Clearly, any decryption attempt that assumed a consistent mapping 
between the letters in the ciphertext and those in the original message was bound to fail. 
 
Enigma settings 
 
This ever-changing encoding scheme made Enigma's ciphertext much harder to decode and 
importantly contributed to the Germans' confidence that they could freely transmit encoded 
messages over the airwaves. At the same time, it did not pose any problem to the German 
operators for whom the messages were intended. One reason is that these operators had their 
own Enigma machines, and the other is that they also had a top-secret codebook, distributed 
among all German communication stations. The book specified, for each given day, exactly how 



German operators should configure their Enigma machines on that day. Recall that the Enigma 
machine was both an encoder and a decoder in one: a ciphertext produced on one Enigma 
could be typed into another Enigma to light up exactly the letters that were typed to produce 
the ciphertext to begin with. But this only worked if both machines were set to the same 
configuration: it would fail, for instance, if one machine's plugboard routed L to Q, while the 
other routed L to G, or if the two machines' wheel positions did not match. The secret book 
made sure that all settings did match among German Enigma machines on a given day, so that 
communications proceeded smoothly. 
 
Among the settings specified in the codebook were the positions of the wheels: it is only a 
modest simplification2 to say that all German operators used the same wheel positions at the 
start of each message sent or received on a given day. One can think of this as the codebook 
specifying which of the approximately eighteen thousand (26x26x26) encoding schemes applied 
to the first symbol in each message on that day, and automatically also which next scheme 
applied to the second symbol, to the third, etcetera. However, Enigma machines had several 
additional settings, to which the book also prescribed daily updates, and which further modified 
the encoding scheme. For one thing, an Enigma's wheels were removable, and each morning 
the operators used the book to decide which three wheels to place in the machine out of five 
uniquely wired wheels that were available, and in which left-to-right order. Information in the 
codebook further specified, for the first and second wheel, at which point in the 26-step 
revolution each of them should push its neighbor wheel one step up (determined by the so-
called ring settings), as well as how the operator should wire up the plugboard that day. All in 
all, the codebook allowed the German operators to set their machines to one out of roughly a 
trillion times a trillion (1023) configurations that were a priori possible. Recall that typing a piece 
of ciphertext into an Enigma machine would only produce the original message if the settings of 
the encoding machine and the decoding machine matched exactly, so this enormous number of 
possibilities formed a tremendous obstacle to those trying to interpret intercepted pieces of 
Enigma ciphertext.  
 
The logic of Turing's approach: cribs, menus and loops 
 
It was 1938, about a year before the war, when Alan Turing first became involved in the British 
effort of trying to crack the Enigma code. Before the British, the Polish secret service had been 
closely following the development of the German cipher, and had made several breakthroughs, 
including determining the internal wiring of each of the Enigma's wheels. By the time World 
War Two began in 1939, the British and French had received vital information from the Poles 
and had, in fact, each received a complete Enigma replica from them. Even that, however, did 
not allow Turing and his team to start decrypting Germany's communications. After all, without 
access to the Germans' secret codebook, the British still had to figure out which of 1023 possible 
Enigma configurations the Germans were using on a given day. What Turing and his colleagues 
are remembered for today, is their solution to this problem: a solution that enabled them to 
quickly reduce the humongous number of possible Enigma settings down to a small few that 
the Germans may have been using on a given day, thereby allowing that day's intercepted 
ciphertexts to be decrypted. 



 
Although we established above that tallying up ciphertext symbols is not helpful for deciphering 
Enigma code, Turing's approach had one similarity with that approach, as well as with many 
other codebreaking techniques. This is the fact that it exploited regularities in the secret 
communications that were intercepted by the British: ways in which the communications 
deviate from randomness. In Turing's case, the starting point was formed by regularities 
introduced by the Germans' communication habits. In some cases, for instance, Turing could be 
confident that a sequence of 10 symbols somewhere toward the end of a piece of intercepted 
ciphertext corresponded to the German 'HEILHITLER'.  Or, another example, he knew that every 
day around a certain time the Germans would broadcast a message that, in the original 
German, included the string 'WETTERFORHERSAGE' -- Wetterforhersage being the German 
word for weather forecast. Based on this type of knowledge, Turing and his team could 
highlight snippets of intercepted ciphertext and pair them up with the suspected German that 
they encoded. Such a piece of suspected German text was called a crib. Turing realized that a 
crib with its associated ciphertext said something about the configuration of the Enigma 
machine that produced the ciphertext. In very general terms this is obvious: imagine 
intercepting a ciphertext message that starts with 'OWWFOQE', and imagine knowing that 
sequence to stand for 'WETTERF'. This would tell you that the German operator who encrypted 
the message saw an O light up when they typed the first W into their machine, which rules out 
many configurations for that machine at that time.  
 

That specific piece of information, 
however, would not be very useful. For 
one thing, the Enigma machines' 
ongoing wheel rotations ensured that a 
W-to-O mapping at the start of a 
message implied very little about what 
an O meant elsewhere in the 
ciphertext. More fundamentally, the 
amount of information provided by 
that single W-to-O mapping would be 
miniscule compared to the sheer 
number of possible Enigma settings 
that may have been used: above we 

saw that there are about 1023 possible Enigma settings total, and we may expect W to translate 
to O at about 1/26 of all those settings -- still an awful lot. In other words, when it comes to 
Turing's overall goal of quickly homing in on a small number of candidate Enigma settings, this 
specific piece of information would not get him very far. One of the important features of 
Turing's approach addressed this issue: rather than focusing on the crib-ciphertext mapping of 
any single letter in a pair like 'WETTERF'/'OWWFOQE', the approach managed to maximize 
information gain by considering the entire pair at once. One can think of this as Turing 
searching for settings at which it wasn't just the case that W translated to O, but at which it was 
also the case that a subsequent E -- encoded 1/26 rotations of the first wheel onward but 
otherwise at the same settings -- translated to W, and a T that followed yet 1/26 wheel 

 
Figure 3. An example of a crib/cyphertext pair (panel A), and 
its associated menu (panel B). 
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rotations down translated to another W, etcetera. All seven requirements implied by this 
seven-letter crib/ciphertext pair are summarized in Figure 3A. The proportion of settings at 
which these requirements were all met, of course, would be much smaller than the proportion 
that met the W-to-O requirement on its own.  
 
To understand Turing's approach, let's again consider the 'WETTERF'/'OWWFOQE' pair. Turing 
and his team summarized such pairs using schematics like the one shown in Figure 3B, called 
menus. This particular menu shows that there are two letters, W and O, that translate into each 
other at some wheel position labeled X. It also shows that E and W translate into each other 
one wheel step further, at position X+1; that T and W translate into each other at position X+2, 
etcetera until the end of the crib/ciphertext pair. There are two things to note about this menu. 
First, because the Enigma was both an encoding machine and a decoding machine the direction 
of the connecting lines does not matter: at position X a keyboard letter W translates to a 
lightbulb letter O (during encoding), but a keyboard letter O also translates to a lightbulb letter 
W (during decoding). The second thing to note is that this menu contains two of what are called 
loops. One can follow the first loop by tracing the triangle (clockwise) that runs from W to O at 
position X, then on to E at position X+4, and then back to W at position X+1 to complete the 
loop. The second loop is one step longer and runs from W, to E, to F, to T, and back to W.  
 
Such loops were critical for Turing's approach. As 
mentioned above, the approach was designed to glean as 
much information as possible from a crib/ciphertext pair by 
considering all letter mappings in the pair at once. But it 
turns out that the amount of information contributed by a 
given letter mapping within the pair (or, in other words, the 
proportion of possible Enigma settings ruled out by that 
particular mapping) was especially large if that mapping 
closed a loop. For the following explanation of why that is, 
it is helpful to recall the distinction between the 26 keys 
and bulbs that connected to the outside of an Enigma's 
plugboard, and the 26 connectors on the plugboard's inner 
side that made contact with the first wheel. As mentioned 
above, sometimes the plugboard would simply link a given 
letter's key or bulb with the corresponding inner connector, so the W key, say, would activate 
the W connector. In other cases there would be a rerouting, so that the W's so-called plugboard 
partner would be a different letter. In our explanation we will use the prime symbol to denote a 
letter's plugboard partner, so W' indicates whichever inner connector is linked to the W key and 
bulb, irrespective of potential rerouting inside the plugboard (Figure 4). With this in mind a loop 
like Figure 3B's W-O-E-W loop shows that Turing would be looking for a wheel configuration X 
with the following properties. 
 1. At configuration X, a signal at the W' connector results -- via the wheels and the 
reflector circuit -- in a signal at O'. Equivalently, a signal at O' results in a signal at W'. 

 
Figure 4. Illustration of terminology. 
The connector to which the 
plugboard routes the W key and W 
bulb, is designated the W' connector. 
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 2. Four rotation steps of the first wheel onward but otherwise at the same wheel 
configuration (i.e., at configuration X+4), that same O' connector now links to a third connector 
E'. 
 3. Three wheel steps before that latter position, but otherwise again at the same 
configuration (i.e., at configuration X+1), E' now links back to the same W' connector that we 
started with.  
 
To see why the addition of property 3 is so important, let's consider what each property reveals 
about the wheels, if one does not know the plugboard mappings. More specifically, let's 
imagine trying each possible connector W' (i.e., each possible plugboard partner of the W key 
and bulb), and for each of these connectors evaluating how many candidate wheel settings can 
be ruled out based on these three properties. Property 1 on its own states that inner plugboard 
connector W' routes to a second inner plugboard connector, O'. Regardless of which inner 
plugboard connector one chooses for W', this first property on its own rules out no wheel 
configurations at all. After all, each inner plugboard connector routes to a second inner 
plugboard connector for all possible wheel settings, and if the plugboard mappings are 
unknown then this second connector may be O'. The addition of property 2 does rule out some 
wheel configurations, but not many. Properties 1 and 2 together state that W' routes to O' at 
setting X, and also that O' routes to a third connector, E', at setting X+4. As just pointed out in 
the context of property 1 on its own, no matter which wheel setting is X, any connector W' 
routes to a second inner plugboard connector. Similarly, no matter which wheel setting is X+4, 
this second connector O' also routes to some third inner plugboard connector. However, 
because this third connector may be any connector along the plugboard’s inner surface other 
than O' itself, at about 1/25 of all possible wheel settings it is W': the connector that we started 
off with. Yet property 2 specifies that O' does not route straight back to W' at setting X+4: it 
routes to a different connector, E' (i.e., the plugboard partner of the E bulb and key; not the 
plugboard partner of the W bulb and key). In sum, for each possible connector W' that one may 
try, properties 1 and 2 together yield a contradiction for about 1/25 of all possible wheel 
settings, leaving only 24/25 as viable candidates. A similar logic shows why adding property 3, 
and thereby closing Figure 3B's W-O-E-W loop via X+1, is so informative. Let's say that, for some 
choice of connector W', one has restricted the possible wheel configurations X+1 to only those, 
for which properties 1 (at setting X) and 2 (at setting X+4) can both be true. For what 
proportion of those configurations can property 3 be true as well? In other words, for what 
proportion of possible settings X+1 does a signal to connector E' prompt a signal back at the 
original connector W'? Because E' can connect to any of the 25 connectors that are not E' itself, 
this proportion is only 1/25. In other words, when one closes the loop by adding property 3, the 
majority of wheel configurations can instantly be discarded for each given choice of connector 
W'. 
 
Of course, even a reduction by 1/25 is not very large relative to the total number of a priori 
possibilities, but recall that Turing's approach made use of all letter mappings in a menu at the 
same time; not just of the ones that formed a single loop. The menu of Figure 3B has two 
different loops, corresponding to a larger reduction, and Turing worked with menus with more 
loops than that. 



 
The implementation of Turing's approach: the Bombe 
 

The above illustrates that a sufficiently restrictive 
menu may help narrow down the number of 
possible Enigma wheel settings to a manageable 
few. But how could Turing's team do that in practice, 
and how could they do it quickly? That is where a 
machine called the Bombe comes in. A Bombe 
(Figure 5) was an electromechanical device, 
effectively a type of early computer, that Turing 
designed on the basis of earlier Polish machines, for 
the specific purpose of identifying viable Enigma 
settings based on menus like the one shown in 
Figure 3B. In other words, a Bombe could take the 
information contained in any menu that the British 
codebreakers constructed on the basis of a 

crib/ciphertext pair, and home in on those Enigma settings that could have produced that 
crib/ciphertext pair. To understand how a Bombe could do that, we need to look at its 
components and operation.  
 
One can think of a Bombe as 
roughly a collection of 
Enigma machines, 
electrically connected end to 
end, so that an electrical 
signal coming out of one 
Enigma machine at a 
particular letter, entered the 
next Enigma machine at the 
same letter. More precisely, 
each module inside a Bombe 
mimicked the assembly of 
wheels and reflector circuit 
that could be found in an Enigma machine, but 'unfolded' by including two copies of each wheel 
(let's call them A and B), so that a signal could pass into the module via wheels 1A, 2A, and 3A 
to the reflector circuit, and then back out via wheels 3B, 2B, and 1B. Moreover, while in an 
Enigma machine the first wheel lined up with the 26 connectors that formed the inner side of 
the plugboard, in a Bombe module those same connectors were hooked up to the 
corresponding 26 connectors in the next module (Figure 6). 
 

 
Figure 5. A Bombe. This image created by the 
United Kingdom Government is in the public 
domain. 

 
Figure 6. Schematic of a module inside a Bombe. 



Before setting a Bombe to work, 
Turing and his colleagues would 
connect its modules up according to 
a promising menu they had derived 
from an intercepted message. Figure 
7 illustrates this for the menu of 
Figure 3. Each module in the 
Bombe's circuit takes the place of a 
line in the menu. As detailed below, 
just like each line connects two 
letters in the menu, each Bombe 
module was meant to mimic the 
encoding Enigma's wheel assembly 
at the moment when those two 

letters (one on the keyboard, the other on the lightboard) were translated into each other as 
the crib was being typed. Bundles of wires running between Bombe modules, in turn, take the 
place of the menu's letters. Accordingly, in Figure 7 each of these bundles is marked by a circled 
letter, denoting the Enigma interface letter that is at the corresponding menu location. The 
individual wires are also labeled (E, F, etc.), to denote how the wires correspond with the 
connectors on the inner surface of an Enigma plugboard. Bear in mind that this does not imply 
a correspondence with any particular interface letter: rerouting in the plugboard ensured that, 
say, inner connector E need not be inner connector E' (using Figure 4's terminology). To avoid 
clutter, in Figure 7 each bundle has not 26 but only five wires, which is all we will need for the 
explanations below. 
 
Aside from the connections between the modules, each module individually would also be set 
up in accordance with the menu. Like the wheels in Enigma machines, those inside a Bombe 
module could rotate. While it was not important what specific positions Turing's team would 
set the modules' wheels to before starting the machine, it was critical that they set the 
modules’ wheel configurations correctly relative to each other: the number of wheel steps 
separating the individual modules' configurations should match those in the menu. In other 
words, the British could choose any wheel configuration for the module that is marked X in 
Figure 7, as long as the other modules were configured correctly relative to that (i.e., X+1, X+2, 
etc.) Maintaining these relative settings was important because, as mentioned, the purpose of 
the modules was to mimic the encoding Enigma's wheel settings as they were at various points 
in the process of typing a crib. And, while the absolute settings of this encoding machine were 
obviously not known, a menu did specify the relation between these settings at different 
points. 
 
Once the modules inside a Bombe were set up according to a menu, 'pressing play' on the 
Bombe corresponded to applying a voltage to one of the 26 (5 in our example) wires that 
connected two modules. Critically, what happened next depended on whether the wheel 
configurations in the Bombe could explain the crib/ciphertext pair that was summarized by the 
menu or not. In other words, in our example it would distinguish whether the configuration of 

 
Figure 7. Schematic of a Bombe that has been set up according to 
the menu of Figure 3B. 
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the module marked X could possibly match the Enigma wheel configuration when the initial W 
of ‘WETTERF’ was typed to make the O bulb light up. Before having a closer look at this, please 
note that Bombes featured no plugboard analog, and that we will initially pretend that Enigma 
machines had no plugboard either: we will act as if knowing which Enigma button was pressed 
or which light came on, was enough to know which of the 26 connectors carried a signal to or 
from the Enigma's first wheel. This simplifying assumption means that one could start a 
Bombe’s operation by applying a voltage to exactly the wire that corresponded to the first key 
of the crib that was used to configure the Bombe. Figure 7’s Bombe was set up according to the 
‘WETTERF’/‘OWWFOQE' pair, so we will examine what happens in our example when a voltage 
(symbolized by a lightning bolt in the figure) is applied to the W wire inside the W bundle. Later 
we will take into account the Enigma plugboard, and examine how this changes things. 
 



Figure 8A shows part of how this 
electrical signal propagates 
through the example Bombe's 
circuit if the wheel configuration 
of the module marked X happens 
to exactly match that of the 
Enigma that encrypted the initial 
W of the crib as an O. In that case 
the signal, after entering the X 
module via the W wire inside the 
W bundle, exits via the O wire 
inside the O bundle (still under 
the assumption that there is no 
plugboard). In the Bombe’s circuit 
this O wire connects to the 
module marked X+4. One can 
apply the same reasoning to that 
module: if module X happens to 
be correctly configured, then 
module X+4 is also correctly 
configured: that module has the 
setting that applied when the 
Enigma encrypted the 5th letter of 
the crib, an E, as an O. This means 
that the signal would continue to 
the E wire inside the E bundle, as 
shown in Figure 8A. This E wire 
connects to two further Bombe 
modules, but Figure 8A focuses 
only on module X+1. Module X+1 
corresponds to a position in the 
crib/ciphertext pair where an E 
translates to a W, so inside this 
module the E wire leads to the W 
wire. In fact, it leads to exactly 
the same W wire to which a 
voltage was applied to begin 
with. This is an important 
observation: in the scenario 
where the Bombe’s wheel settings happen to be correct, there is a closed electric circuit that 
consistently involves only one connecting wire as we trace the loop along modules X, X+4, and 
X+1. Of course, Figure 8A ignores signal propagation in the second loop of this Bombe, but 
Figure 8B shows that the situation does not importantly change when that loop is included. The 
logic laid out above applies to the second loop, as well, so the modules and connecting wires 

 
Figure 8. Illustration of signal propagation in the Bombe of Figure 7, 
in two different scenarios. Panels A and B: the Bombe's wheel 
settings match Enigma settings that can account for Figure 3A's 
crib/ciphertext pair. Panel C: they do not. 
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inside that loop also form a closed electric circuit, and it remains true that only one connecting 
wire carries the signal from module to module anywhere in the Bombe. 
 
The situation is very different in the scenario where the Bombe’s wheel settings do not match 
those of the Enigma that produced the ‘WETTERF’/‘OWWFOQE' crib/ciphertext pair. This is 
illustrated in Figure 8C. Again, a voltage is applied to the W wire of the W bundle, but now 
there is no guarantee that this will translate to a signal coming out at the O wire of the O 
bundle. Because the module can have any settings in this scenario, the signal is equally likely to 
exit at any of the wires. Let’s say it exits at the E wire and propagates from there to the X+4 
module. Again, there is no way of telling where it will exit, and Figure 8C shows one option: the 
one where it exits on the T wire. The figure also shows the signal completing its lap via the X+1 
module, which (in this example) it exits on the F wire inside the W bundle. Now we reach a 
critical observation: while in Figure 8A this was the end of the story, this time it is not. This time 
the signal does not come back on itself on the W wire inside the W bundle, thereby completing 
all signal propagation inside the X, X+4, X+1 loop. Instead, the signal returns to the X module via 
a new wire, the F wire, and thereby starts a new lap around this loop, along a different set of 
connecting wires. In other words, in contrast to the situation of Figure 8A, this time the signal 
does not remain restricted to a circuit of single wires that are electrically isolated from the 
others. 
 
Of course, Figure 8C shows just one possibility, and there are countless other ones. Perhaps a 
signal that enters the X module at the W connection exits on the F wire rather than the E wire, 
etcetera. But regardless, the probability of the signal coming back on itself after one full lap 
around a loop is small: in our example it is 1/5 and in a real Bombe with all connecting wires it 
was 1/26. That probability increased slightly upon each further lap around a given loop, but it 
remained modest even after several laps (1/25 after two laps, 1/24 after three, etc.) Moreover, 
recall that useful menus had multiple loops: the one of Figure 3 has two, and the ones used by 
Turing’s team had more. Figure 8B illustrated that, when the Bombe’s settings happened to be 
correct, all loops converged right back onto the same wires, thereby keeping the signal 
restricted to that one, electrically isolated circuit. The chances of that happening at incorrect 
settings got smaller and smaller, the more loops the Bombe and its underlying menu contained. 
In fact, for sufficiently restrictive menus there was a high likelihood for incorrect settings to 
result in the signal propagating to every single connecting wire inside the Bombe. 
 
In sum, after configuring a Bombe according to a menu derived from a crib/ciphertext pair, one 
could establish whether the Bombe's current wheel settings could account for the pair by 
applying a voltage to one wire inside the Bombe, and then measuring the voltages on all 
connecting wires between any given module pair. If only one of those wires carried the signal 
then the settings could account for the pair, and if all of them did then they could not. It is 
exactly this fact that was exploited in the design of Turing's Bombes. Recall that the wheels 
inside a Bombe could turn, just like the ones inside an Enigma did. The Bombes' design also 
featured a component that measured the voltages on all wires connecting a module pair, and 
this component fed into a set of electric motors that drove this wheel rotation. If this 
component measured that the signal was present on all wires, indicating that the current wheel 



settings were incorrect, then the wheel assemblies inside all modules would rotate 
simultaneously by a single step. In other words, then the Bombe would instantly proceed to the 
next possible wheel settings in order to test those. In this fashion the wheels would keep 
spinning, testing about 2 settings per second, or 7200 per hour, until the component measured 
a signal on only one connecting wire, thereby bringing the motors to a halt. At that point an 
operator could read the wheel settings inside the Bombe -- wheel settings that had a high 
likelihood of matching those used by the German operator who produced the intercepted 
ciphertext. 
 
From obstacle to aid: the surprising role of the plugboard 
 
The above paragraphs explained the basic principle of a Bombe's workings. But the explanation 
may have left you skeptical that Bombes were practically useful. For one thing, testing settings 
at a rate of 7200 per hour, although impressive, is not helpful if the total number of options is 
around 1023: it would still take more time than the age of the universe to test them all. 
Additionally, the above explanation depended on the simplifying assumption that there was no 
plugboard. This made it possible to apply the initial voltage to a connecting wire (the W wire 
inside the W bundle) that corresponded to an element of the crib/ciphertext pair (the initial W 
of 'WETTERF'), and to then follow the resulting signal as it remained restricted to an electrically 
isolated circuit. Real Enigmas did have plugboards, so Turing and his colleagues could not know 
which Bombe wires corresponded to elements of the crib/ciphertext pair. If the W key at the 
start of a crib, for instance, routed to the F connection inside the Enigma plugboard, then the 
corresponding Bombe wire would be the F wire inside the W bundle. And then, as a final 
complicating factor, we should consider the ring settings. As briefly mentioned above, in an 
Enigma machine the ring settings determined at which position in its 26-step cycle the first 
wheel would nudge the second wheel one step up, and at which position in its 26-step cycle the 
second wheel would do the same to the third wheel. Importantly, these events could happen 
while a crib was being entered into an Enigma to produce the corresponding ciphertext, and 
this influenced whether different Bombe modules, for instance modules X and X+4 in Figure 8, 
should differ only in the positions of their first wheels, or also in those of the second and, 
perhaps, third. 
 
The issue of the ring settings is related to a modification to Turing's original Bombe design that 
was introduced by Gordon Welshman, a mathematician and a wartime colleague of Turing's. 
This modification is called the diagonal board, and it will be discussed further down in this text. 
Before that, we will focus on the issues of the plugboard and of the sheer number of possible 
Enigma settings, which turn out to be related issues. Specifically, close consideration of the 
explanations surrounding Figure 8 reveals that plugboard settings were irrelevant to a Bombe's 
operation and could, in fact, be inferred along with the wheel settings after the Bombe had 
come to a halt. As a result, it is fair to say that a Bombe's only job was to find viable wheel 
settings, of which there were not nearly as many as Enigma settings in general. 
 
To understand why the plugboard settings were irrelevant, consider a situation just like the one 
of Figure 8, except now the ‘WETTERF’/‘OWWFOQE' pair was produced on an Enigma with a 



plugboard that rerouted the signals passing between the Enigma's interface and its first wheel. 
As a result, when the initial W was typed into the Enigma, its signal did not enter the first wheel 
at the W connector on the plugboard's inner side: connector W was not connector W'. The 
question is how this would change our example Bombe’s behavior if we still, as in Figure 8, 
started its operation by applying a voltage to the W wire inside the W bundle. At incorrect 
wheel settings nothing important would change: the signal would still propagate throughout 
the Bombe's circuitry until it was present on all wires (if the menu was sufficiently restrictive). 
Things would change substantially, on the other hand, at correct wheel settings. Just as at 
incorrect wheel settings, there would now be no way of predicting where the signal would exit 
module X. After all, in this scenario the configuration of module X matches the wheel 
configuration of an Enigma in which the W key connects to the O bulb; not an Enigma in which 
the W connector on the plugboard’s inner side connects to any particular second connector. As 
a result, at correct wheel settings the signal would now start propagating across the Bombe’s 
wires, just like at incorrect settings. This seems worrisome, because then how can one 
distinguish correct wheel settings from incorrect ones in this scenario? The answer is that at 
correct settings signal propagation would be importantly restricted: there would be one circuit 
of single connecting wires that the propagating signal could not reach. If that seems surprising, 
then consider this. The reason that in Figures 8A-B the signal remained restricted to a circuit of 
single connecting wires, is that this circuit was electrically isolated from the other wires. The 
presence of a plugboard does not change the fact that such an isolated circuit exists inside our 
Bombe at correct wheel settings: it is still there, formed by those wires that correspond to the 
connectors on the plugboard’s inner surface that were activated when the crib was typed to 
produce the ciphertext (i.e., connectors W' and O' when the crib's initial W was encrypted as an 
O, etcetera). The only thing the plugboard does, is make it impossible to know ahead of time 
which wires those are, and to deliberately apply the initial voltage to one of them. 
 
The upshot is that, relative to our Bombe's workings as laid out above, all that needs to change 
to accommodate the plugboard is the criterion that stops the wheels from turning: the wheels 
of a real Bombe stopped whenever a signal was measured on only one wire connecting two 
modules, but also when a signal was measured on all wires but one. Only if all wires carried the 
signal would the wheels keep spinning. Moreover, even though Bombes were designed, then, 
to crunch through candidate wheel settings exclusively, a Bombe’s state after it had halted also 
provided information on plugboard settings. Just like an operator could examine the modules of 
a halted Bombe to find viable wheel setting, they could find associated plugboard settings by 
measuring the voltages on connecting wires. For instance, imagine the Bombe of Figure 8 
halting with a signal present on all wires inside bundle W except the F wire. This would mean 
that the F wire forms this section of the isolated circuit (rather than the W wire, as in Figures 
8A-B), so it would point to a plugboard that routes the W key and bulb to the F connector. By 
also measuring the wires between other module pairs, the plugboard routings of the 
crib/ciphertext pair's remaining letters could be inferred in the same way. 
 
In sum, not only did the plugboard do nothing to prevent Turing and his team from finding 
candidate wheel configurations; finding candidate wheel configurations is all they needed to 
do, because associated plugboard settings could be identified in the process. This greatly 



reduced the number of possible options to search through: from 1023 down to about one 
million (taking into account that each Enigma wheel had 26 possible starting positions, and that 
the German codebook also specified which three wheels to use to begin with, out of five 
available). With several Bombes working in parallel on the same menu and each of them 
crunching through about 7200 wheel settings per hour, therefore, Turing and his team had a 
solid chance of identifying a given day’s Enigma settings. For example, eight Bombes working at 
the same time could examine roughly half of the possibilities within 10 hours. 
 
What has not yet been considered in the above analysis is the ring settings: the settings that 
determined at which point in its cycle the first Enigma wheel would nudge up the second wheel 
by one step, and at which point the second wheel would nudge the third. A critical concept 
above was that of Bombe modules being displaced relative to each other by a given number of 
wheel steps. What was meant, for instance by a statement like 'one module has wheel 
configuration X, and the other has wheel configuration X+4', was that the modules' 
configurations differed by four steps of the first wheel, in an attempt to match the state 
difference within the encoding Enigma machine between the moments that it encrypted the 
crib's first letter and fifth letter. In reality, however, that state difference may have consisted of 
four steps of the first wheel as well as one step of the second (if the first wheel nudged the 
second one during this initial part of the crib). Or, in rare cases, four steps of the first, one step 
of the second, and also one step of the third. In short, the ring settings multiplied the one 
million or so possible settings that one might want to consider, and this multiplication (by a 
factor of 676) would seem to put a large dent in Turing’s chances of finding the right settings in 
time. 
 
One potential strategy to avoid this concern, was to use a relatively short crib, and to assume 
that it involved no movement of the encoding Enigma's second or third wheel. For a crib of only 
two letters, for instance, the chances of its creation having involved any movement of the 
Enigma's second wheel were only 1/26, and for the third wheel those chances were smaller 
still. A related but better approach, with a longer crib in hand, was to cut it into two 
consecutive fragments of 13 letters each, and to assign each fragment to a different group of 
Bombes. Because the second wheel moved only once for every 26 key presses, one could be 
certain that one of the fragments involved movement of only the first wheel, so only that first 
wheel would have to be considered in the Bombes' operation. But there was a drawback to the 
British using such approaches, and that was that shorter cribs were less restrictive: there were 
more possible Enigma settings that could account for a given crib/ciphertext pair if it was short, 
so for shorter cribs the Bombes would come up with more false alarms. 
 
This dilemma limited the effectiveness of the British codebreaking effort until, as briefly 
mentioned above, Gordon Welshman proposed his extension to the Bombe design; an 
extension called the diagonal board. In essence, the diagonal board's value lay in the fact that it 
allowed more information to be squeezed from a given crib, thereby increasing how restrictive 
that crib was in terms of the number of Enigma settings that it ruled out. This, in turn, allowed 
the British to use shorter cribs, thereby mitigating the issues raised by the ring settings. 
 



Intriguingly, what allowed the diagonal board to work was the plugboard, a component meant 
to thwart codebreaking efforts. Above we saw that the plugboard posed no obstacle in a 
Bombe's search for suitable wheel settings. With the addition of the diagonal board, the 
plugboard even made this search easier. The reason is a particular design feature of the 
plugboard. Namely, if the plugboard was set up such, that a given key and light bulb, say A, 
were routed to a different letter's connector on the plugboard's inner side, say B, then this 
would automatically also route the B key and bulb to the inner connector of letter A. It is not 
hard to see why the plugboard may have been designed this way: it avoided the possibility of 
multiple keys and bulbs leading to the same connector on the plugboard's inner surface, which 
would cause ambiguity when encoding or decoding a message. But the design feature also 
introduced into crib/ciphertext pairs something that was identified above as a foothold for 
codebreakers: deviation from randomness. In particular, if one somehow knew that key and 
bulb A routed to inner connector B, then this automatically ruled out all but one possible 
plugboard setting for key and bulb B. In their original design, Bombes did not use this 
information, but with the addition of Welshman's diagonal board they did. 
 

Figure 9 illustrates the diagonal board. 
It shows the same Bombe as before, 
but now with an additional connection: 
between the O wire inside the W 
bundle, and the W wire inside the O 
bundle. What the diagonal board did 
was add connections between 
different parts of the Bombe’s 
circuitry, and this added connection 
would be one of them. Let’s consider 
what this connection would do in three 
different scenarios. The first is a 
scenario in which the wheel settings 
are incorrect. At incorrect settings, as 

we have seen, applying the initial voltage results in the signal propagating across all wires of the 
Bombe (if the menu is restrictive enough). In that case, what the added connection does is 
facilitate this propagation by providing the signal an additional route. This is why the diagonal 
board made short cribs more restrictive: it reduced the chances of some parts of the Bombe's 
circuitry not being reached by the signal when wheel settings were, in reality, incorrect. 
 
The second scenario is one in which the wheel settings are correct and, moreover, the 
crib/ciphertext pair happens to come from an Enigma machine with a plugboard that routed 
the W key and W bulb to the O connection inside the plugboard. In the Bombe, this means that 
the O wire inside the W bundle must be part of the circuit of single wires that are electrically 
isolated from the rest of the Bombe. The added connection in Figure 9 routes this wire to the W 
wire inside the O bundle, so if that latter wire does not form a leg of that same circuit then the 
added connection would break the circuit's isolation, and the Bombe would no longer function 
as intended. The plugboard design, however, ensured that if an encoding Enigma's plugboard 

 
Figure 9. Illustration of the diagonal board. This schematic 
matches that of Figures 7 and 8, but with one wire of the 
diagonal board added. 
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routed the W key and bulb to the O connection, as in this scenario, then it also routed the O key 
and bulb to the W connection. In other words, the W wire in the O bundle does form a leg of 
the isolated circuit, so all the added connection does here is link two wires that were already 
linked, as part of the isolated circuit of single wires.  
 
Very similar reasoning applies to the third possible scenario, in which the wheel settings are 
also correct, but the crib/ciphertext pair comes from an Enigma machine with a plugboard that 
did not route the W key and bulb to the O connection inside the plugboard. This means that the 
O wire in the Bombe's W bundle cannot be part of the electrically isolated circuit of single 
wires, so the connection added by the diagonal board does no harm as long as the W wire 
inside the O bundle does not belong to that circuit either. The symmetric design of the 
plugboard again ensures that this requirement is met, as a plugboard that does not route the W 
key and bulb to the O connection, cannot route the O key and bulb to the W connection, either. 
As in the previous scenario, therefore, the added wire does nothing but link two wires that 
were already part of the same network of connected wires, this time the majority of wires 
outside of the isolated circuit. 
 
The diagonal board did in a systematic way what the added connection between the W 
bundle's O wire and the O bundle's W wire does in Figure 9. If we use the letters X and Y as 
placeholders for all letters present in a crib/ciphertext pair, then for each X bundle the diagonal 
board connected each Y wire to the corresponding X wire of the Y bundle. For each of those 
numerous connections the same logic applies as the one laid out above, so the diagonal board 
reduced the rate at which a Bombe would halt at incorrect wheel settings, without preventing it 
from halting at correct wheel settings. A major benefit of this, to return to the topic that started 
our discussion of the diagonal board, was that it allowed the British to use shorter cribs, and 
thereby avoid problems posed by the ring settings. 
 
The legacy of Turing and his Bombe 
 
The achievements of Turing, Welshman, and their colleagues played a large role in the Allied 
war effort, by some estimates shortening World War Two by years and saving millions of lives. 
Rather than being celebrated as a war hero, however, Turing lived a post-war life that was short 
and marked by tragedy. This was in part because the confidential nature of his codebreaking 
work limited the general public's awareness of Turing's contributions. More importantly, Turing 
was a homosexual and homosexual relations were illegal in Britain at the time. A few years 
after the war, in 1952, Turing was charged with 'gross indecency', and he was convicted shortly 
after. As a result of this conviction, the nation that was so indebted to Turing, had him undergo 
hormone injections to suppress his libido. Turing's life ended in 1954, when he was found dead 
at age 41 after a suspected suicide. 
 
In more recent years Turing has received his due recognition. In the early twenty-first century, 
the British government apologized for Turing's treatment and pardoned his conviction. There is 
also general agreement on the importance of Turing's intellectual contributions -- not only as a 



codebreaker during World War Two, but also as a foundational figure in the fields of computer 
science and artificial intelligence. 
 
Further reading 
 
I first became interested in the Enigma and the Bombe years ago when reading Simon Singh's 
The code book: the science of secrecy from ancient Egypt to quantum cryptography. I remember 
that book as a great read and a good introduction to cryptography in general. The book gave 
me a general sense of how the Enigma and the Bombe worked, and piqued my interest in them. 
This prompted me to later pick up Enigma: the battle for the code by Hugh Sebag-Montefiore. 
That book provides much more detail about the Bombe and its historical context, and it allowed 
me to fill in some blanks in my understanding. But I wasn't able to really put it together until I 
came across http://www.ellsbury.com/enigmabombe.htm, a website that has the best 
explanation of the Bombe's workings that I have seen. 
 
Footnotes 
 
1. There were actually several Enigma variants that differed in design aspects like the number 
of wheels, and also in the security of the code they produced. The variant used by the German 
navy, for instance, had a number of wheels that reached up to eight in later designs, and 
produced code that was particularly hard to crack. 
 
2. This is a simplification. It is not strictly true that the wheel settings were the same for each 
message on a given day. As an added security measure, German operators were instructed to 
randomly choose the rotation positions of the three wheels at the start of each message they 
sent, but to include three symbols that conveyed those positions at the start of the message in 
question. What was prescribed by the codebook were the so-called ring settings, which (aside 
from other things, discussed in the main text) determined which three symbols an operator 
would see, when looking through windows positioned over the wheels, at a given set of wheel 
positions. In other words, the ring settings determined the relation between the three symbols 
that the operator included at the start of a message, and that message's wheel positions. 
Because of this, and even though the wheel settings themselves did not match between 
messages on a given day, the important point remains that cracking the wheel settings for one 
message made it straightforward to identify the wheel settings of other messages sent on the 
same day. 


